Birzeit University
 Mathematics Department

Chapter 2

Name \qquad
\qquad Section \qquad
(Q1) [100 points] Fill the blanks with true (T) or false (F).
] (1) If $A^{2}=I$, then $\operatorname{det}(A)= \pm 1$
] (2) If A and B are $n \times n$ nonsingular matrices, then $\operatorname{det}(A-B)=\operatorname{det}(A)-\operatorname{det}(B)$.
] (3) If A is an 2×2 matrix, then $|\alpha A|=\alpha^{4}|A|$.
] (4) If $\operatorname{det}(A)=1$, then $A^{-1}=\operatorname{adj} A$.
] (5) If A and B are $n \times n$ matrices such that $A B$ is singular, then at least A or B is singular.
] (6) If $A=\left[\begin{array}{lll}2 & 5 & 7 \\ 1 & 3 & 4 \\ 2 & 1 & 6\end{array}\right]$, then the $(2,3)$ entry of A^{-1} is $-\frac{1}{3}$.
] (7) If A and B are 2×2 matrices such that $\operatorname{det}(B A)=0$, then $\operatorname{det}(A)=0$ and $\operatorname{det}(B)=0$.
] (8) If A and B are $n \times n$ matrices, then $\operatorname{det}\left((A B)^{T}\right)=\operatorname{det}(A) \operatorname{det}(B)$.
] (9) Row equivalent matrices have the same determinants.
] (10) If A is singular, then $\operatorname{adj} A$ is also singular.
] (11) Cramer's rule can be used to solve any square linear system.
] (12) If A and B are $n \times n$ matrices and A is singular, then $A B$ is singular.
] (13) $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$ only when A and B are nonsingular.
] (14) If A is an $n \times n$ matrix, then $\left|A^{n}\right|=|A|^{n}$.
] (15) Every diagonal matrix is nonsingular.
] (16) Every Elementary matrix is nonsingular.
] (17) $\operatorname{det}(-I)=-\operatorname{det}(I)$.
] (18) If A is a 5×5 skew-symmetric matrix, then the system $A x=0$ has a nontrivial solution.
] (19) $|A B|=|B A|$ for any $n \times n$ matrices A and B.
] (20) If A, B, S are $n \times n$ matrices such that S is nonsingular and $A=S B S^{-1}$, then $|A|=|B|$.
] (21) If A is a 7×7 nonsingular matrix, then the RREF of A has 7 nonzero rows.
] (22) If $|A|=1$, then $A=I$.
] (23) If $A=L U$ is the $L U$ factorization of A and U is nonsingular, then A is nonsingular.
] (24) If A is a singular matrix and U is the REF of A, then $|U|=0$.
] (25) If A is a square and nonsingular matrix with $|\operatorname{adj} A|=|A|$, then A is 2×2.
] (26) If A and B are square nonzero matrices with $A B=0$, then both A and B are singular.
] (27) If $\operatorname{det}(A)=0$, the A is a zero matrix.
] (28) If the diagonal entries of a square matrix are all zero, then it is singular.
] (29) If A is a 3×3 with $a_{1}=a_{3}$, then $\operatorname{det}(A)=0$.
] (30) If the system $A^{3} x=0$ has a nontrivial solution, then A is singular .
] (31) If E is a 4×4 elementary matrix, then the linear system $E x=b$ is consistent for any $b \in \mathbb{R}^{4}$.
] (32) If A is a square matrix and one of the rows is a linear combination of the others, then $|A|=0$.
] (33) If A is an $n \times n$ matrix with $n>1$, then $|\operatorname{adj} A|=|A|^{n-1}$.
] (34) If A is an $n \times n$ matrix, then $\operatorname{det}\left(A^{T} A\right) \geq 0$.
] (35) There is a matrix A such that $A^{-1}=\left[\begin{array}{ll}4 & 2 \\ 6 & 3\end{array}\right]$.
] (36) If A^{T} is singular, then A^{2} is also singular.
] (37) There exists a nonsingular matrix with two identical columns.
] (38) A matrix having a zero row cannot be row equivalent to I.
] (39) If E and F are 2×2 elementary matrices of type I and III respectively, then $\operatorname{det}\left(-2 E^{T} F^{-1}\right)=4$.
] (40) If A is a nonsingular diagonal matrix, then A^{-1} is also diagonal.
] (41) $\operatorname{det}\left(A B^{T}\right)=\operatorname{det}\left(A^{T} B\right)$ for any $n \times n$ matrices A and B.
] (42) If $\operatorname{det}(A-B)=0$, then $A=B$.
] (43) If $\operatorname{det}(A-B)=0$, then the matrix equation $A x=B x$ has a nonzero solution.
] (44) A triangular matrix is nonsingular if and only if its diagonal elements are all nonzero.
] (45) If A is a nonzero matrix with $A^{k}=0$ for some positive integer k, then A is singular.
] (46) If x and y are two distinct vectors in \mathbb{R}^{n} such that $A x=A y$, then $\operatorname{det}(A)=0$.
] (47) If A and B are 3×3 matrices with $|A|=2$ and $|B|=-6$, then $\left|-3 A B^{-1}\right|=9$.
] (48) If A is a nonsingular matrix, then $\operatorname{adj} A^{-1}=(\operatorname{adj} A)^{-1}$.
] (49) If A is a symmetric matrix, then $\operatorname{adj} A$ is also symmetric.
] (50) If E and F are 3×3 elementary matrices of type I and A is 3×3, then $|-A E F|=|A|$.

