Birzeit University Mathematics Department

Chapter 2 Math 234 2017/2018

(Q1) [100 points] Fill the blanks with true (T) or false (F).

- [] (1) If $A^2 = I$, then $det(A) = \pm 1$
 - (2) If A and B are $n \times n$ nonsingular matrices, then det(A B) = det(A) det(B).
- [] (3) If A is an 2×2 matrix, then $|\alpha A| = \alpha^4 |A|$.
 - (4) If det(A) = 1, then $A^{-1} = adjA$.
- (5) If A and B are $n \times n$ matrices such that AB is singular, then at least A or B is singular.

] (6) If
$$A = \begin{bmatrix} 2 & 5 & 7 \\ 1 & 3 & 4 \\ 2 & 1 & 6 \end{bmatrix}$$
, then the (2,3) entry of A^{-1} is $-\frac{1}{3}$.

- [7] If A and B are 2×2 matrices such that det(BA) = 0, then det(A) = 0 and det(B) = 0.
- [(8) If A and B are $n \times n$ matrices, then $det((AB)^T) = det(A)det(B)$.
- (9) Row equivalent matrices have the same determinants.
- (10) If A is singular, then adjA is also singular.
- (11) Cramer's rule can be used to solve any square linear system.
- (12) If A and B are $n \times n$ matrices and A is singular, then AB is singular.
- (13) det(AB) = det(A)det(B) only when A and B are nonsingular.
- (14) If A is an $n \times n$ matrix, then $|A^n| = |A|^n$.
- (15) Every diagonal matrix is nonsingular.
- (16) Every Elementary matrix is nonsingular.
- $(17) \ det(-I) = -det(I).$
- (18) If A is a 5×5 skew-symmetric matrix, then the system Ax = 0 has a nontrivial solution.
- |AB| = |BA| for any $n \times n$ matrices A and B.
- (20) If A, B, S are $n \times n$ matrices such that S is nonsingular and $A = SBS^{-1}$, then |A| = |B|.
- (21) If A is a 7×7 nonsingular matrix, then the RREF of A has 7 nonzero rows.
- |(22)| If |A| = 1, then A = I.
 - (23) If A = LU is the LU factorization of A and U is nonsingular, then A is nonsingular.
 - (24) If A is a singular matrix and U is the REF of A, then |U| = 0.
 - (25) If A is a square and nonsingular matrix with |adjA| = |A|, then A is 2×2 .
- (26) If A and B are square nonzero matrices with AB = 0, then both A and B are singular.
- [] (27) If det(A) = 0, the A is a zero matrix.
- (28) If the diagonal entries of a square matrix are all zero, then it is singular.

- [] (29) If A is a 3×3 with $a_1 = a_3$, then det(A) = 0.
- [30) If the system $A^3x = 0$ has a nontrivial solution, then A is singular.
- [] (31) If E is a 4×4 elementary matrix, then the linear system Ex = b is consistent for any $b \in \mathbb{R}^4$.
- [32) If A is a square matrix and one of the rows is a linear combination of the others, then |A| = 0.
- [] (33) If A is an $n \times n$ matrix with n > 1, then $|adjA| = |A|^{n-1}$.
- (34) If A is an $n \times n$ matrix, then $det(A^T A) \geq 0$.
- [] (35) There is a matrix A such that $A^{-1} = \begin{bmatrix} 4 & 2 \\ 6 & 3 \end{bmatrix}$.
 - (36) If A^T is singular, then A^2 is also singular.
- (37) There exists a nonsingular matrix with two identical columns.
 - (38) A matrix having a zero row cannot be row equivalent to I.
- (39) If E and F are 2×2 elementary matrices of type I and III respectively, then $det(-2E^TF^{-1}) = 4$.
-] (40) If A is a nonsingular diagonal matrix, then A^{-1} is also diagonal.
 - (41) $det(AB^T) = det(A^TB)$ for any $n \times n$ matrices A and B.
 - (42) If det(A B) = 0, then A = B.
- (43) If det(A B) = 0, then the matrix equation Ax = Bx has a nonzero solution.
- (44) A triangular matrix is nonsingular if and only if its diagonal elements are all nonzero.
 - (45) If A is a nonzero matrix with $A^k = 0$ for some positive integer k, then A is singular.
- (46) If x and y are two distinct vectors in \mathbb{R}^n such that Ax = Ay, then det(A) = 0.
- [(47) If A and B are 3×3 matrices with |A| = 2 and |B| = -6, then $|-3AB^{-1}| = 9$.
-] (48) If A is a nonsingular matrix, then $adjA^{-1} = (adjA)^{-1}$.
- [(49) If A is a symmetric matrix, then adjA is also symmetric.
- [] (50) If E and F are 3×3 elementary matrices of type I and A is 3×3 , then |-AEF| = |A|.